Accueil > Hypercomplex > Le nombre pi

Le nombre pi

dimanche 4 février 2007, par Flo.®

Le nombre pi, noté par la lettre grecque du même nom π (toujours en minuscule) est le rapport constant entre la circonférence d’un cercle et son diamètre. Il est appelé aussi constante d’Archimède.

Sa valeur approchée est un est un nombre irrationnel, c’est-à-dire qu’il n’est pas le rapport de deux nombres entiers . En fait, ce nombre est transcendant. Ceci signifie qu’il n’existe pas de polynôme non nul à coefficients entiers dont π soit une racine.
La transcendance de π établit l’impossibilité de résoudre le problème de la quadrature du cercle : il est impossible de construire, à l’aide de la règle et du compas seulement, un carré dont la surface est rigoureusement égale à la surface d’un disque donné.
Si le diamètre du cercle est 1, sa circonférence est π.

Histoire :

Le nombre π a très tôt été une source d’inspiration pour de nombreux mathématiciens, et ce autant en algèbre qu’en analyse. Ainsi, dès l’Antiquité, les savants, notamment les savants Grecs, se sont penchés sur les propriétés de ce nombre lors d’étude sur des problèmes de géométrie.

GIF - 260.5 ko

La plus ancienne valeur de π dont la véracité est attestée provient d’une tablette babylonienne en écriture cunéiforme, découverte en 1936. Cette tablette date de 2000 avant J.-C. Les Babyloniens y seraient arrivés en comparant le périmètre du cercle avec celui de l’hexagone inscrit, égal à trois fois le diamètre ; ils e
n déduisirent une des premières valeurs connues de π : π = 3 + 1 / 8 (soit 3,125).
Découvert en 1855, le papyrus de Rhind contient le texte, recopié vers l’an 1650 avant notre ère par le scribe égyptien Ahmès, d’un manuel de problèmes pédagogique plus ancien encore. On trouve trace d’un calcul qui implique que π est évalué à (16 / 9)2 (soit 3,160...).

Du fait de sa nature irrationnelle, le nombre π ne possède pas de développement décimal fini ou périodique. Il en résulte que l’on ne peut en calculer qu’une écriture décimale approchée. Par exemple, une valeur approchée avec cent décimales est
3,1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679...

Même si ils sont pratiquement sûr que pi est une valeur d’une infinité de décimales, les mathématiciens font tourner jour et nuit des ordinateurs qui calculent les décimales de pi, dans l’éspoir de trouver un jour une valeur éxacte de pi.

Pour l’utilisation courante, 3,14 ou 22/7 sont souvent suffisants, bien que les ingénieurs utilisent plus souvent 3,1416 (5 chiffres significatifs) ou 3,14159 (6 chiffres significatifs) pour plus de précision dans leurs calculs préliminaires (dans les calculs finaux, cependant, ils doivent utiliser la précision maximale de l’ordinateur, soit de 8 à 19 chiffres significatifs). 355/113 est une fraction facilement mémorisable qui donne 7 chiffres significatifs.

Exemples de formules pour calculer π :

ou

ou

ou

Le calcul des décimales de Pi s’emballa au XXe siècle avec l’apparition de l’informatique : 2037 sont calculées en 1949 par le calculateur américain ENIAC, 10 000 décimales sont obtenues en 1958, 100 000 en 1961, 1 000 000 en 1973, 10 000 000 en 1982, 100 000 000 en 1989, puis 1 000 000 000 la même année. En 2002, 1 241 100 000 000 décimales étaient connues.

Le record actuel est donc de 1 241 100 000 000 de décimales, déterminées après 600 heures de calcul en novembre 2002 sur un supercalculateur parallèle Hitachi à 64 nœuds, avec 1 téraoctet de mémoire centrale, qui pouvait effectuer 2 000 milliards d’opérations en virgule flottante par seconde, soit près de deux fois plus que pour le précédent record (206 milliards de décimales).

Retenir pi :

Un moyen mnémotechnique populaire (mais peu pratique) est le poème :

Que j’aime à faire connaître ce nombre utile aux sages !
Immortel Archimède, artiste, ingénieur,
Qui de ton jugement peut priser la valeur ?
Pour moi ton problème eut de pareils avantages.
Jadis, mystérieux, un problème bloquait
Tout l’admirable procédé, l’œuvre grandiose
Que Pythagore découvrit aux anciens Grecs.
Ô quadrature ! Vieux tourment du philosophe
Insoluble rondeur, trop longtemps vous avez
Défié Pythagore et ses imitateurs.
Comment intégrer l’espace plan circulaire ?
Former un triangle auquel il équivaudra
Nouvelle invention : Archimède inscrira
Dedans un hexagone ; appréciera son aire
Fonction du rayon. Pas trop ne s’y tiendra :
Dédoublera chaque élément antérieur ;
Toujours de l’orbe calculée approchera ;
Définira limite ; enfin, l’arc, le limiteur
De cet inquiétant cercle, ennemi trop rebelle
Professeur, enseignez son problème avec zèle

Le nombre de lettres de chaque mot correspond à une décimale, sauf pour le chiffre "0" dont le codage correspond à un mot de 10 lettres.

En 2005, un japonais de 59 ans, Akira Haraguchi, a réussi à aligner par cœur 83 431 décimales de pi en 13 heures. Il réitéra son record un an plus tard (2006) en mémorisant et récitant publiquement 100 000 décimales pendant 16 heures. Cet exploit a été homologué par le Livre Guinness des records.



Voir en ligne : Wikipedia.org

Répondre à cet article